15 research outputs found

    Future Frame Prediction for Anomaly Detection -- A New Baseline

    Full text link
    Anomaly detection in videos refers to the identification of events that do not conform to expected behavior. However, almost all existing methods tackle the problem by minimizing the reconstruction errors of training data, which cannot guarantee a larger reconstruction error for an abnormal event. In this paper, we propose to tackle the anomaly detection problem within a video prediction framework. To the best of our knowledge, this is the first work that leverages the difference between a predicted future frame and its ground truth to detect an abnormal event. To predict a future frame with higher quality for normal events, other than the commonly used appearance (spatial) constraints on intensity and gradient, we also introduce a motion (temporal) constraint in video prediction by enforcing the optical flow between predicted frames and ground truth frames to be consistent, and this is the first work that introduces a temporal constraint into the video prediction task. Such spatial and motion constraints facilitate the future frame prediction for normal events, and consequently facilitate to identify those abnormal events that do not conform the expectation. Extensive experiments on both a toy dataset and some publicly available datasets validate the effectiveness of our method in terms of robustness to the uncertainty in normal events and the sensitivity to abnormal events.Comment: IEEE Conference on Computer Vision and Pattern Recognition 201

    Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning

    Full text link
    Existing fine-tuning methods either tune all parameters of the pre-trained model (full fine-tuning), which is not efficient, or only tune the last linear layer (linear probing), which suffers a significant accuracy drop compared to the full fine-tuning. In this paper, we propose a new parameter-efficient fine-tuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance of full fine-tuning. In this way, SSF also surprisingly outperforms other parameter-efficient fine-tuning approaches even with a smaller number of tunable parameters. Furthermore, different from some existing parameter-efficient fine-tuning methods (e.g., Adapter or VPT) that introduce the extra parameters and computational cost in the training and inference stages, SSF only adds learnable parameters during the training stage, and these additional parameters can be merged into the original pre-trained model weights via re-parameterization in the inference phase. With the proposed SSF, our model obtains 2.46% (90.72% vs. 88.54%) and 11.48% (73.10% vs. 65.57%) performance improvement on FGVC and VTAB-1k in terms of Top-1 accuracy compared to the full fine-tuning but only fine-tuning about 0.3M parameters. We also conduct amounts of experiments in various model families (CNNs, Transformers, and MLPs) and datasets. Results on 26 image classification datasets in total and 3 robustness & out-of-distribution datasets show the effectiveness of SSF. Code is available at https://github.com/dongzelian/SSF.Comment: Accepted by NeurIPS202

    Priority-Centric Human Motion Generation in Discrete Latent Space

    Full text link
    Text-to-motion generation is a formidable task, aiming to produce human motions that align with the input text while also adhering to human capabilities and physical laws. While there have been advancements in diffusion models, their application in discrete spaces remains underexplored. Current methods often overlook the varying significance of different motions, treating them uniformly. It is essential to recognize that not all motions hold the same relevance to a particular textual description. Some motions, being more salient and informative, should be given precedence during generation. In response, we introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM), which utilizes a Transformer-based VQ-VAE to derive a concise, discrete motion representation, incorporating a global self-attention mechanism and a regularization term to counteract code collapse. We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token within the entire motion sequence. This approach retains the most salient motions during the reverse diffusion process, leading to more semantically rich and varied motions. Additionally, we formulate two strategies to gauge the importance of motion tokens, drawing from both textual and visual indicators. Comprehensive experiments on the HumanML3D and KIT-ML datasets confirm that our model surpasses existing techniques in fidelity and diversity, particularly for intricate textual descriptions.Comment: Accepted by ICCV202

    GraphAdapter: Tuning Vision-Language Models With Dual Knowledge Graph

    Full text link
    Adapter-style efficient transfer learning (ETL) has shown excellent performance in the tuning of vision-language models (VLMs) under the low-data regime, where only a few additional parameters are introduced to excavate the task-specific knowledge based on the general and powerful representation of VLMs. However, most adapter-style works face two limitations: (i) modeling task-specific knowledge with a single modality only; and (ii) overlooking the exploitation of the inter-class relationships in downstream tasks, thereby leading to sub-optimal solutions. To mitigate that, we propose an effective adapter-style tuning strategy, dubbed GraphAdapter, which performs the textual adapter by explicitly modeling the dual-modality structure knowledge (i.e., the correlation of different semantics/classes in textual and visual modalities) with a dual knowledge graph. In particular, the dual knowledge graph is established with two sub-graphs, i.e., a textual knowledge sub-graph, and a visual knowledge sub-graph, where the nodes and edges represent the semantics/classes and their correlations in two modalities, respectively. This enables the textual feature of each prompt to leverage the task-specific structure knowledge from both textual and visual modalities, yielding a more effective classifier for downstream tasks. Extensive experimental results on 11 benchmark datasets reveal that our GraphAdapter significantly outperforms previous adapter-based methods. The code will be released at https://github.com/lixinustc/GraphAdapterComment: Accepted by NeurIPS 2023. The manuscript will be further revised based on the review

    Weakly Supervised Video Representation Learning with Unaligned Text for Sequential Videos

    Full text link
    Sequential video understanding, as an emerging video understanding task, has driven lots of researchers' attention because of its goal-oriented nature. This paper studies weakly supervised sequential video understanding where the accurate time-stamp level text-video alignment is not provided. We solve this task by borrowing ideas from CLIP. Specifically, we use a transformer to aggregate frame-level features for video representation and use a pre-trained text encoder to encode the texts corresponding to each action and the whole video, respectively. To model the correspondence between text and video, we propose a multiple granularity loss, where the video-paragraph contrastive loss enforces matching between the whole video and the complete script, and a fine-grained frame-sentence contrastive loss enforces the matching between each action and its description. As the frame-sentence correspondence is not available, we propose to use the fact that video actions happen sequentially in the temporal domain to generate pseudo frame-sentence correspondence and supervise the network training with the pseudo labels. Extensive experiments on video sequence verification and text-to-video matching show that our method outperforms baselines by a large margin, which validates the effectiveness of our proposed approach. Code is available at https://github.com/svip-lab/WeakSVRComment: CVPR 2023. Code: https://github.com/svip-lab/WeakSV

    TM2D: Bimodality Driven 3D Dance Generation via Music-Text Integration

    Full text link
    We propose a novel task for generating 3D dance movements that simultaneously incorporate both text and music modalities. Unlike existing works that generate dance movements using a single modality such as music, our goal is to produce richer dance movements guided by the instructive information provided by the text. However, the lack of paired motion data with both music and text modalities limits the ability to generate dance movements that integrate both. To alleviate this challenge, we propose to utilize a 3D human motion VQ-VAE to project the motions of the two datasets into a latent space consisting of quantized vectors, which effectively mix the motion tokens from the two datasets with different distributions for training. Additionally, we propose a cross-modal transformer to integrate text instructions into motion generation architecture for generating 3D dance movements without degrading the performance of music-conditioned dance generation. To better evaluate the quality of the generated motion, we introduce two novel metrics, namely Motion Prediction Distance (MPD) and Freezing Score, to measure the coherence and freezing percentage of the generated motion. Extensive experiments show that our approach can generate realistic and coherent dance movements conditioned on both text and music while maintaining comparable performance with the two single modalities. Code will be available at: https://garfield-kh.github.io/TM2D/

    Dataset Quantization

    Full text link
    State-of-the-art deep neural networks are trained with large amounts (millions or even billions) of data. The expensive computation and memory costs make it difficult to train them on limited hardware resources, especially for recent popular large language models (LLM) and computer vision models (CV). Recent popular dataset distillation methods are thus developed, aiming to reduce the number of training samples via synthesizing small-scale datasets via gradient matching. However, as the gradient calculation is coupled with the specific network architecture, the synthesized dataset is biased and performs poorly when used for training unseen architectures. To address these limitations, we present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets which can be used for training any neural network architectures. Extensive experiments demonstrate that DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training. To the best of our knowledge, DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio. Notably, with 60% data from ImageNet and 20% data from Alpaca's instruction tuning data, the models can be trained with negligible or no performance drop for both vision tasks (including classification, semantic segmentation, and object detection) as well as language tasks (including instruction tuning tasks such as BBH and DROP).Comment: 9 page
    corecore